

labMANUAL

Open Communication

labZY Firmware

Versions 30.19, 30.20

Rev A2 2

Contents

Overview .. 3

Applicable Devices ... 3

Computer Connections .. 3

UART Interface .. 4

Communication Protocol .. 7

Port Settings .. 7

Commands and Responses ... 7

MICRO Data .. 14

FPGA Data ... 14

Spectrum.. 15

Registers .. 15

Application Information .. 16

Revision History .. 19

Rev A2 3

Overview

Applicable Devices

This document applies to the following labZY Devices:

 nanoMCA

 nanoMCA-SP

 nanoXRS

 nanoDPP

“labZY Device” refers to any of these devices.

Computer Connections

labZY Devices are connected to a computer using one of the following hardware

connections: direct USB cable, Ethernet connection through nanoETH module and

wireless connection using the nanoBT interface module. When the driver of each one of

these connections is installed a virtual COM port is created. Fig. 1 shows the PORT

selection dialog of the labZY-MCA software. The selection list include all available

virtual COM ports of the labZY Devices.

nanoBT

nanoETH

USB

Fig. 1 PORT selection dialog of labZY-MCA software.

Rev A2 4

The virtual COM ports emulate standard serial ports and must be configured before

being used. The RTS functionality is built-in feature of the nanoBT and nanoRTH

modules.

The USB interface cable may provide power to the labZY eliminating the need of an

external power supply. The external power supply will be required for the Bluetooth,

WiFi and the Ethernet connections. The external power supply can be used as a

backup power source when the labZY Devices are connected through the direct USB

interface. The USB interface cable and the interface modules are connected to the IO

port of the labZY Devices (Fig. 2). The external power is applied through a standard

Mini B USB cable to the PWR port of the labZY Devices.

Fig. 2 Interface (IO) and power (PWR) connectors of the labZY Devices.

UART Interface

labZY Devices can be interfaced to a microcontroller or a microprocessor based system

using an UART port with 3.3V CMOS logic levels. The hardware connection is through a

6 inch (15cm) USB Mini B cable with flying leads shown in Fig. 3.

Rev A2 5

6in (15cm)

Fig 3. Cable for connecting the labZY Devices directly to UART ports.

The physical connection between the labZY Device and the UART port of a

microcontroller is shown in Fig. 4. The labZY Device can provide +3.3V power and up to

300mA current to the microcontroller or other external circuits. The +3.3V is available on

the red lead of the interface cable. If this power is not needed the red lead should be

isolated and kept unconnected. Note that the UART interface requires that a +5V

external power is supplied to the PWR connector of the labZY Device.

OUTPUT

INPUT

+3.3V from

nanoTool
+3.3V

RXD

TXD

RTS

GND

OUTPUT

GND

M
ic

ro
co

n
tr

o
ll

er

Fig. 4 Microcontroller connection to labZY Devices using UART interface.

Rev A2 6

The output line of the microcontroller serial TXD line is connected to the orange lead of

the interface cable. The serial input line is connected to the green wire. The

microcontroller flow control line RTS is connected to the brown lead. An example of the

UART signal waveforms is shown in Fig. 5. Note that the asserted level of the RTS line

is logic LOW (3.3V CMOS).

Fig. 5 UART interface signals.

The RTS line is used to control the data flow from the labZY Device into the

microcontroller and to prevent loss of data. The microcontroller must de-assert RTS line

in advance of its receiving buffer becomes full leaving room to receive at least two extra

bytes from the labZY Device. This is an important consideration as there might still be

data on the line and/or in the labZY Device transmit register which has to be received

even after RTS has been de-asserted. When the microcontroller is ready to accept

more data it should assert the RTS line and keep it asserted until the receiving buffer

gets close to become full. The labZY Device serial port will stop transmission of data as

soon as it senses the asserted state of the RTS signal and will pause the transmission

until RTS is again asserted. The labZY Device can accept all data send by the

microcontroller without any interruption of the transmission. Therefore, there is no need

of CTS hardware control to the microcontroller. If the microcontroller UART port is

equipped with a CTS line then it should be asserted all the time. The timing diagram in

Fig. 6 illustrates the data transmission using the RTS control line showing the extra

bytes transmitted after the RTS line is de-asserted.

Fig. 6 Pausing data flow using the RTS line.

Rev A2 7

Communication Protocol

Port Settings

The settings for computer virtual com ports or the UART are as follows:

 Baud Rate: 460800 (Firmware Ver 30.19)

 Baud Rate: 921600 (Firmware Ver 30.20)

 Data Bits: 8

 Stop Bits: 1

 Parity: N

 Handshaking: Hardware, RTS only,

 UART: RTS asserted state is active LOW

Commands and Responses

The communication between a labZY Device and the host (computer or

microcontroller) is accomplished using commands and responses sent in half-duplex

serial transmission as shown in Fig. 7.

Fig. 7 Half duplex serial communication. Shown are the host signals.

The host first sends a command through its TXD line and then listens for a response on

its RXD line. In normal operation there should be no simultaneous transmissions on the

Rev A2 8

TXD and the RXD lines. The labZY Device is a slave device while the host is a master

device. Therefore, the master initiates the communication by sending a command.

Subsequent commands are sent by the host only after a complete and valid response

has been received from the labZY Device or a time-out interval has been reached. The

time-out interval should be equal or greater than five seconds.

There are only two commands to access data and to control the labZY Device. The

FPGA spectral data (spectrum) and the FPGA registers are accessed as memory data

at specific addresses. Each memory location is organized and accessed as a 16-bit

word. Each 16-bit word consists of two bytes and two words comprise a long word.

Bytes representing words and long words, and words representing long words are

stored in the memory in a Little-Endian order.

The host sends and receives the data as a sequence of bytes. The first byte in the

sequence is designated as zero byte (BYTE[0]) followed by bytes whose order is

incrementally numbered. Bytes are sent in order that follows the Little-Endian rule when

the bytes represent words or long words.

 The last byte in each command and in the corresponding response from the labZY

Device is a check sum byte - CHKS. The content of the check sum byte is obtained in

two steps. First, a byte sum is calculated by adding all bytes in the command/response

excluding the check sum byte. In the byte sum calculation the bytes are treated as

unsigned numbers and the overflow is ignored. This sum is stored in the check sum

byte. That is, the check sum byte acts as an accumulator of all bytes of the

command/response. Secondly, all bits of the obtained byte sum are inverted and the

result is incremented by 2 ignoring the overflow. This value is the check sum CHKS

included as a last byte in the host command or the labZY Device response.

The data is read or written in words starting at an initial address IADR or IADW

respectively. This address is specified in the commands sent by the host to the labZY

Device. An AutoIncrement bit is a part of the address information send by the host. If

the AutoIncrement bit in the address field of the command is set to one, then the data

address will be incremented automatically after each word reading/writing. The start

address is the initial address specified by the host. When reading data and the

AutoIncrement bit is zero then the data will be read from the same initial address if the

number of words to be read is greater than one. When more than one word is to be

written with the AutoIncrement bit set to zero then the data at the specified address will

be overwritten until the last data word send by the host is written. The host commands

also include the number of bytes to be read or written to the FPGA memory - TNBR or

TNBW respectively.

Rev A2 9

READ COMMAND

1. Host Read Command

BYTE[0,1]:WORD[0] = 100 - Command code.

BYTE[2,3]:WORD[1] = 11 - Number of bytes in the read command

 including the check sum byte.

BYTE[4,5,6,7]:LONG WORD[1] = BIT[21..0], BIT22, BIT[31..23]

BIT[21..0]] = IADR - FPGA Address of the first data word to

 be read.

BIT22 = AutoIncrement - If AutoIncrement=1, FPGA word

 address automatically increments as

 words are read beginning with IADR, if

 AutoIncrement=0 the word at address

 IADR is read TNBR times.

BIT[31..23] = 0

BYTE[8,9]:WORD[4] = TNBR - The number of FPGA data bytes to be

 read (twice the number of FPGA data

 words to be read). TNBR must be an

 even number.

BYTE[10] = CHKS - Check sum byte.

Example: Reading 127 FPGA Registers starting from Register[1] at FPGA

 address 0x8001. Bytes are sent in Little-Endian order.

0x00 0x01 0x80 0x40 0x00 0xFE 0x00 0xD30x64 0x00 0x0B

0x0064 0x000B 0x00408001 0x00FE 0xD3

FIRST

BYTE

LAST

BYTE

WORD[0] WORD[1] LONG WORD[1] WORD[4] CHKS

COMMAND CHKS

Rev A2 10

Example Check Sum calculation:

, , ,

 CHKS = 0xD1 + 0x02 = 0xD3

2. labZY Device Response to Host Read Command

BYTE[0,1]:WORD[0] = 100 - Response Code (same as the Read

 Command Code).

BYTE[2,3]:WORD[1] = 25 + TNBR - Number of bytes in the response

 including the check sum byte.

BYTE[4,5,6,7]:LONG WORD[1] = BIT[21..0], BIT22, BIT[31..23]

BIT[21..0] = IADR - FPGA Address of the first data word to

 be read (same as in the command).

BIT22 = AutoIncrement - AutoIncrement bit (same as in the

 read command).

BIT[31..23] = 0

BYTE[8..23]: WORD[4..11] = MICRO Data - Hardware status data from the

 labZY Device microcontroller, read only

or read volatile.

BYTE[24..23+TNBR]:WORD[12..11+TNBR/2] = FPGA DATA

BYTE[24+TNBR] = CHKS - Check sum byte.

Example: labZY Device response to the host command to read 127 FPGA

 Registers starting from Register[1] at FPGA address 0x8001. Note that the

Rev A2 11

 response always includes the MICRO Data along with the Response and the

 FPGA Data. Bytes are received in Little-Endian order.

0x3F 0x00 0x00 0x00 0x000x2C 0x01 0x5F

FIRST

BYTE

0xC7

LAST

BYTE

0x1A 0x740x80 0xB1

0x01 0x01 0x80 0x40 0x000x64 0x00 0x17

0x00 0x1D 0x00 0x76 0x720x8A 0x01 0x00

RESPONSE MICRO DATA FPGA DATA CHKS

WRITE COMMAND

1. Host Write Command

BYTE[0,1]:WORD[0] = 110 - Command code.

BYTE[2,3]:WORD[1] = 9 + TNBW - Number of bytes in the response

 including the check sum byte. TNBW is

 the number of FPGA Data bytes to be

 written. TNBW is always an even

 number. NOTE: The maximum number

 of FPGA data bytes in each write

 command is 512.

Rev A2 12

BYTE[4,5,6,7]:LONG WORD[1] = BIT[21..0], BIT22, BIT23, BIT[31..24]

BIT[21..0] = IADW - FPGA Address of the first data word to

 be written.

BIT22 = AutoIncrement - If AutoIncrement=1, FPGA word

 address automatically increments as

 words are written beginning with IADW,

 if AutoIncrement=0 the word at address

 IADW is overwritten TNBW times.

BIT23 = 1

BIT[31..24]= 0

BYTE[8..7+TNBW]:WORD[4..3+TNBW/2] = DATA to FPGA

BYTE[8+TNBW] = CHKS - Check sum byte.

Example: Writing data to 116 FPGA Registers starting from Register[12] at

 FPGA address 0x800C with automatic address increment. Bytes are sent in

 Little-Endian order.

0x00 0x0C 0x80 0xC0 0x00

0x26

0x6E 0x00 0xF1

FIRST

BYTE

LAST

BYTE

0x1A 0x740x80 0xB1

COMMAND DATA to FPGA CHKS

Rev A2 13

2. labZY Device Response to Host Write Command

BYTE[0,1]:WORD[0] = 110 - Response Code (same as the Read

 Command Code).

BYTE[2,3]:WORD[1] = 9 - Number of bytes in the response

 including the check sum byte.

BYTE[4,5,6,7]:LONG WORD[1] = BIT[21..0], BIT22, BIT[31..23]

BIT[21..0] = IADW - FPGA Address of the first data word to

 be written (same as in the command).

BIT22 = AutoIncrement - AutoIncrement bit (same as in the

 write command).

BIT23 = 1

BIT[31..24]= 0

BYTE[8] = CHKS - Check sum byte.

Example: labZY Device response to a command to write data to 116 FPGA

 Registers starting from Register[12] at FPGA address 0x800C with automatic

 address increment. Bytes are received in Little-Endian order

0x00 0x0C 0x80 0xC0 0x00 0x3E0x6E 0x00 0x09

FIRST

BYTE

LAST

BYTE

RESPONSE CHKS

Rev A2 14

MICRO Data

The MICRO Data is a set of eight words that are transmitted as part of the labZY Device

response to the host READ COMMAND. WORD[4] (BYTE [8,9]) through WORD[11]

(BYTE [22,23]) in the response represent the MICRO Data. The Micro Data is read only

data and represent constant or volatile values. The volatile values may change between

consecutive readings.

WORD [4] = Constant, Unsigned, Firmware Version *100. e.g. 321 = Version 3.21

WORD [5] = Constant, Unsigned, labZY Device serial number.

WORD [6] = Volatile, Unsigned, nanoXRS only, Detector Bias Voltage [V];

 Other Devices RESERVED.

WORD [7] = RESERVED.

WORD [8] = Volatile, Signed, nanoXRS detector temperature;

 Other Devices Input D slow ADC reading 0 to 2500 [mV].

WORD [9] = Volatile, Unsigned, nanoXRS cooling power 0 to 330; Divide by 3.3 to find

 % power.

 Other Devices RESERVED.

WORD [10] = Volatile, Signed, labZY Device internal temperature [C].

WORD [11] = RESERVED.

FPGA Data

FPGA Data is stored internally in the FPGA. The FPGA Data includes the Spectrum and

the Registers. The Spectrum is stored in the FPGA internal memory and can be

accessed as words (16bit) at word address 0x000 to 0x7FFF. Address space 0x8000 to

0x807F is used to access 16bit registers that control the hardware and provide status

information.

Rev A2 15

Spectrum

The labZY Devices store spectral data in a spectrum with a fixed size of 16384 (214)

channels. The counts in each channel are stored in a long word using the Little-Endian

rule. Therefore, the content of each channel is accessed by reading two words (two

memory locations of the memory address space). For instance, the counts of channel

zero can be obtained by reading the words at addresses 0x0000 and 0x0001. The

counts of the last channel are represented by the words at addresses 0x7FFE and

0x7FFF. With a single read command multiple channels can be read sequentially by

setting the address AutoIncrement bit. It is recommended that few thousand channels

are read by a single read command, e.g. 4096 channels.

Registers

Physically the registers are part of the FPGA designs supplied by labZY. Registers are

used to control the operation of the labZY Device with labZY provided FPGA

functionality. The registers are also used to access data such as hardware information,

acquisition time, noise measurements etc. From a software point of view these registers

are 16-bit words. There are 128 registers located at addresses 0x8000 to 0x807F. The

address 0x8000 is the base address. Registers are numbered sequentially from 0 to

127. The register number is the offset relative to the base address.

Rev A2 16

Application Information

Below are hints in C language. These are just hints and not ready to use routines.

/*variables and defines*/

#define READ_DATA_COMMAND 100 /*read data command code*/

#define MAX_REGISTERS 128
#define MAXDATA 512 /*maximum number of bytes that labZY Device will
 accept with a single write data command*/
#define S_AUTOINC (1<<22) /*auto-increment bit*/
#define SPECTRUM_BASE_ADDRESS 0x0000 /*base address of the spectrum data*/
#define REG_BASE_ADDRESS 0x8000 /*base address of the registers*/

#define READ_DATA_BYTE_OFFSET 24 /*FPGA data byte offset in the response from the
 labZY Device*/
#define READ_MICRO_BYTE_OFFSET 8 /*MICRO data byte offset in the response from
 the labZY Device*/
#define READ_DATA_WORD_OFFSET 12 /*FPGA data word offset in the response from the
 labZY Device*/
#define READ_MICRO_WORD_OFFSET 4 /*MICRO data word offset in the response from
 the labZY Device*/
#define READ_DATA_LONG_OFFSET 6 /*FPGA data long offset in the response from the
 labZY Device*/
#define READ_MICRO_LONG_OFFSET 2 /*MICRO data long offset in the response from
 the labZY Device*/

#define MAX_BYTES_RECEIVE 16500 /*maximum number of FPGA bytes to receive from
 labZY Device in a single transmission*/

 union UNION_RCV_BUFFFER{
 unsigned char uc[MAX_BYTES_RECEIVE];
 unsigned short us[MAX_BYTES_RECEIVE/2];
 unsigned long ul[MAX_BYTES_RECEIVE/4];
 char sc[MAX_BYTES_RECEIVE];
 short ss[MAX_BYTES_RECEIVE/2];
 long sl[MAX_BYTES_RECEIVE/4];
 } rbuf; /*host receive data buffer*/

 #define MAX_BYTES_SEND 532
 union UNION_SND_BUFFFER{
 unsigned char uc[MAX_BYTES_SEND];
 unsigned short us[MAX_BYTES_SEND/2];
 unsigned long ul[MAX_BYTES_SEND/4];
 char sc[MAX_BYTES_SEND];
 short ss[MAX_BYTES_SEND/2];
 long sl[MAX_BYTES_SEND/4];
 } sbuf; /*host send data buffer*/

Rev A2 17

 #define MAX_BYTES_REGISTER 2*MAX_REGISTERS
 union UNION_REGISTERS{
 unsigned char uc[MAX_BYTES_REGISTER];
 unsigned short us[MAX_BYTES_REGISTER/2];
 unsigned long ul[MAX_BYTES_REGISTER/4];
 char sc[MAX_BYTES_REGISTER];
 short ss[MAX_BYTES_REGISTER/2];
 long sl[MAX_BYTES_REGISTER/4];
 } reg_mca; /*register storage*/

/********* READ COMMAND *********/
unsigned short readnanoMCA(unsigned long ul_Address, unsigned short us_DataBytesToRead,
 BOOL b_Autoinc){

 sbuf.us[0]=READ_DATA_COMMAND; /*read data command code*/
 sbuf.us[1]=11; /*total number of bytes in the command*/
 if (b_autoinc) sbuf.ul[1]=ul_Address | AUTOINC; /*read this address
 and auto-increment it*/
 else sbuf.ul[1]=ul_Address & ~AUTOINC; /*read this address
 multiple times*/
 sbuf.us[4]= us_DataBytesToRead; /*number of bytes to be read*/

 /********** check sum calculation **********/
 sbuf.uc[10]=sbuf.uc[0];
 for (i=1; i< 10 ; i++){
 sbuf.uc[10] += sbuf.uc[i];
 }
 sbuf.uc[10] = ~sbuf.uc[10]+2;

 /********** send data via serial port **********/
 /* use routine that is supported by OS, compiler, library etc.*/
 /* For example: SerialPort.Write(&sbuf.c[0], sbuf.s[1],2000);
 arguments(pointer to the first byte to be sent to serial port, number of bytes to
 be sent, time-out in mseconds)*/
 /***/

 return Something; /*Return something that is useful*/
 }

/****************** example using READ COMMAND *****************************/
unsigned short us_BytesToRead;
unsigned long ul_Address;
unsigned long ul_StartRegister;
unsigned short us_NumberRegisterstoRead;
us_NumberRegisterstoRead=127;
ul_StartRegister =1;
 ul_Address=REG_BASE_ADDRESS+ul_StartRegister;
 us_BytesToRead =readnanoMCA(ul_Address, us_NumberRegisterstoRead*2, S_AUTOINC);
/*read all nanoMCA registers, excluding register 0, that is read 127 16-bit registers =
254 bytes*/

Rev A2 18

 us_BytesToRead =readnanoMCA(SPECTRUM_BASE_ADDRESS, 8192, S_AUTOINC); /*read the
content of spectrum spectrum channels from channel 0 to channel 1023 inclusive (each
channel data has four bytes - unsigned long)*/
 us_BytesToRead =readnanoMCA(SPECTRUM_BASE_ADDRESS+10000, 8000, S_AUTOINC); /*read
the content of spectrum channels from channel 2500 to channel 4049 inclusive*/

/**/

/**
Start a separate tread to read serial port data or use messages to read the serial port
data.
Place sequentially all bytes in the receive buffer buffer rbuf, with the first received
byte placed in rbuf.uc[0]
Read serial port data until the number of the received bytes matches us_BytesToRead
once the data is received:

1) Find the check sum
example:*/
unsigned char ucChkSum=0;
 for (int i=0; i< READ_FPGA_BYTE_OFFSET+(int)us_DataBytesToRead ; i++){
 ucChkSum += rbuf.uc[i];
 }
 ucChkSum=~ucChkSum+2;

 if(ucChkSum != rbuf.uc[READ_FPGA_BYTE_OFFSET +
(int)us_DataBytesToRead]){handleError();}
 else (extractData());

/*2)Extract data
Example - populate the register union with the data read from the nanoMCA using
us_NumberRegisterstoRead and
ul_StartRegister*/

 for (i=0; i < us_NumberRegisterstoRead; i++){

 reg_mca.us[ul_StartRegister+i] = rbuf.us[READ_DATA_WORD_OFFSET+i];

 }

Rev A2 19

Revision History

Tracking of the revision history begins with Rev A1

Revision A2

- changed the title to add supported Firmware revisions;

- updated the Baud Rate settings on Page 7;

